

ACSM PROGRESSIVE RESISTANCE EXERCISE

- 2-3 times a week
- 1-3 sets of 8-12 repetitions
- $\circ\,$ Starting with 45-50% of 1RM progressing to 70-80% of 1Rm
- 1RM- amount of weight that can be lifted JUST once through available range

INCLUSION CRITERIA

- RCT, Peer reviewed papers, PEDro Scale
- Type 2 DM
- o Human
- PRE
- Exercise duration more than 8 weeks

• Outcome measure: HbA1c

Body Composition

• Comparisons : PRE vs no Exercise PRE vs Aerobic Exercise

1.	eligibility criteria were specified	no 🗆 yes 🗆 where:
2.	subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which treatments were received)	no 🗆 yes 🗆 where:
3.	allocation was concealed	no 🗆 yes 🗆 where:
4.	the groups were similar at baseline regarding the most important prognostic indicators	no 🗆 yes 🗆 where:
5.	there was blinding of all subjects	no 🗆 yes 🗆 where:
6.	there was blinding of all therapists who administered the therapy	no 🗆 yes 🗆 where:
7.	there was blinding of all assessors who measured at least one key outcome	no 🗆 yes 🗖 where:
8.	measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups	no 🗆 yes 🗖 where:
9.	all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by "intention to treat"	no 🗆 yes 🗅 where:
10.	the results of between-group statistical comparisons are reported for at least or key outcome	ne no 🗆 yes 🗆 where:
11.	the study provides both point measures and measures of variability for at least one key outcome	no 🗆 yes 🗆 where:

CHARACTERISTICS OF STUDIES INCLUDED

- Quality: 3-8, avg of 5
- ${\circ}$ 372 participants, 192 completed PRE
- \circ 66% Males
- \circ Average Age: 58.4 Yrs (46.5 67.6 Yrs)
- o Mean BMI: 32 Kg.m⁻²
- ${\circ}$ Duration of DM: 7.2 Yrs (4.8 9 yrs)
- Baseline HbA1c: 7.9%
- Duration of Ex Prog: 19.8 Wks (8-26 wks), 3 times a week, 45-50 minutes/session,

- Exercises were supervised
- Weights and weight machines were used
- 2-3 sets of 8-15 reps of 5-10 Exs
- Outcomes Measured:
 - HbA1c

Strength, Lean Body Mass, Fat Free Mass

Body Composition

- > Vs No Ex (4): No Significant effect
- > Vs Aerobic Ex (3): No significantt effect

Safety

- \succ Recording was done in 8/9 trials
- > 7/8 trials- no exercise related injuries
- > Delayed Onset Muscle Soreness commonest reported problem.

DISCUSSION

- Participants who completed PRE made a 55% improvement towards the target 7% of HbA1c
- Although small, the reduction may be clinically significant
- \checkmark PRE should not be the stand alone treatment
- PRE is better than not exercising at all, but is not significantly better than aerobic exercises
- PRE can be effective when performed only on 3 days a week, compliance rates- 87%

- Sigal (2007), shows combined approach better than PRE and aerobic ex alone
- Improvements were seen in strength, no increase in LBM and Fat free mass- efficency of glucose disposal without change in muscle morphology

CLINICAL IMPLICATIONS

- o 1% Reduction in HbA1c causes
- 37% decrease in risk of microvascular complications
- + 21% decrease in mortality assoc with diabetes
- \circ Easily reproducible, low cost settings
- Can be supervised by physio

RESEARCH QUESTIONS

- Will longer trials influence muscle morphology & will it affect Glycemic control?
- What is minimum duration of programme, minimum frequency of sessions, minimum duration of each session?
- Determine additive benefits of PRE + Aerobic Ex

STRENGTH

- Follows QUOROM checklist for high quality reporting of systematic reviews.
- Includes recent and relevant trials
- Clinically applicable as population was below 40 yrs diabetics, males
- Replicable interventions low cost settings, readily available equipments, supervised by physios

LIMITATION

- Conclusions rely on included trials
- Lack of long term follow up

• Title misleading

- PRE protocols were different
- Physiological basis not clear

PHYSIOLOGICAL BASIS

- Exercise causes increase in GLUT4 in skeletal muscles (insulin-regulated glucose transporter found in adipose tissues, skeletal and cardiac muscle that is responsible for insulin-regulated glucose translocation into the cell)
- Resistance ex increases fat free mass leading to increased glucose disposal
- Aerobic training enhances glucose disposal independent of changes in fat-free mass, fat mass, or maximum aerobic capacity, bringing about functional changes in the muscle

HYPOTHESIS

- As skeletal muscle is the principle area of glucose disposal, increasing muscle bulk would increase insulin sensitivity, perhaps due to improved muscle physiology and vascularity.
- But they did not observe any change in lean body mass and cross-sectional area of skeletal muscles of upper arm and thigh.

